
RailML – A standard data interface for
railroad applications

Andrew Nash1, Daniel Huerlimann1,
Prof. Joerg Schuette2 and Vasco Paul Krauss2
Institute of Transportation Planning and Systems
1Swiss Federal Institute of Technology
Zurich, Switzerland
2Fraunhofer Institute for Transportation Systems and Infrastructure
Dresden, Germany

Abstract
The growing number of computer programs used to model different aspects of
railway operations has created the need for a simple and efficient way to transfer
data between applications. In the past, specialized interface programs have been
developed to transfer data but this is an inefficient and time-consuming process.
As the number of different railway simulation and operations programs
increases, developing and maintaining individual interfaces will become
impractical. RailML has been developed using the XML (eXtensible Markup
Language) to simplify data transfer through the use of a common data structure.
Programs using the RailML language produce export files with the RailML
structure, these files can then be used directly by other RailML compatible
programs. RailML is an open source project being supported and developed by a
growing list of partners. The paper presents a more detailed description of
RailML, outlines the application’s current status, and invites new partners to join
the consortium.

Keywords: railway simulation, timetabling, XML, RailML, data transfer,
transportation data mark-up languages.

COMPRAIL 2004 Dresden, Germany

1 Introduction: Problem and Solution

RailML is an open source data structure that has been developed to simplify the

transfer of data between various railroad simulation and operations computer

programs. This chapter describes the RailML program and the problem it has

been developed to address.

1.1 Railway Data Exchange Problem

Today, the computer has become a standard tool in the planning and operation of

all businesses, and railroads are no exception. In the last few years the number of

specialized computer programs designed to address all aspects of the railroad

business from timetable construction to staff assignment to infrastructure

planning has mushroomed. In most cases these programs have different data

structures and protocols. As the number of programs and applications grows, the

variety of different data structures becomes more and more unwieldy.

In order to efficiently use several different applications for planning

improvements to railroad operations together, data must be exported from one

program and imported into another for further processing. This can be done by

copying data between applications (a long and tedious process for programs with

any significant amount of data) or by using an automatic data transfer program

(transparent for the user). Several specialized interfaces between programs

currently exist, but as the number of railway applications grows this solution

becomes less efficient.

Transferring data between two particular programs requires that two

different interfaces be developed (one for each direction of transfer). As the

number of programs increases the number of possible data transfers increases

significantly. For example, assuming there are five programs, in theory twenty

specialized interfaces need to be developed for full data exchange between all

programs. In general terms, if the number of programs, n, increases linearly, the

number of interfaces [n * (n-1)] increases quadradically.

As the number of new technical solutions, such as Tracking & Tracing, real

time estimates and adjustments, increases, so will the number of railway

programs increase. Clearly, the number of new interfaces to be developed for

these new applications represents a great challenge to the railroad industry.

1.2 Standard Formats for Efficient Data Exchange

The situation in the railroad industry is not unusual, as computers become more

ubiqueous in society there is a growing need for efficient data exchange. Today

these types of data incompatibility problems are being addressed using "open and

universally usable data formats". Such formats are generally developed using the

eXtensible mark-up language (XML) as a basis (e.g. MathML for mathematical

expressions and GML for geographical data).

XML was developed by the World Wide Web consortium for use in WWW

applications (the most well-known mark-up language is XHTML). XML is not

an application language, but rather a set of rules that can be used to define other

“mark-up” languages and therefore functions as a meta language. The major

advantage of XML based documents is that they describe both data as well as the

data’s structure. Therefore, XML was an ideal solution for transfer and storage

of railroad data.

The data transfer problem created as the number of applications increases

can be solved by means of EAI (Enterprise Application Integration). EAI enables

the collaboration of different programs by creating standard interfaces, which are

independent of any given application, but focus on the objects to be exchanged.

The corresponding object descriptions are based on XML syntax.

Effective data exchange between two applications requires that each

program include a function for generating XML data (export) and a function for

reading in and interpreting XML files (import). Due to both the widespread use

of XML and the standardization caused by the World Wide Web, most computer

application development platforms include pre-defined libraries and functions

for the processing of XML based data, which substantially reduces the time

needed to develop import and export functions for creating specialized

applications such as for railroads.

1.3 Development of RailML

In 2001, a group of railroad application developers formed a free partnership

with the objective of developing an open source XML-based language for

railroad applications that would be called RailML. The partnership was

originally organized by researchers from the German Fraunhofer Institute for

Transportation Systems and Infrastructure in Dresden (FhG-IVI) and the Swiss

Federal Institute of Technology’s Institute for Transportation Planning and

Systems (ETH IVT).

The partnership is organized under the name RailML Consortium

(www.railml.org) and has expanded to include researchers from several

universities, railroad operating companies, private research institutes, and

consulting firms. The Fraunhofer Institute serves as the partnership’s technical

coordinator providing resources such as the web page and discussion forum.

As a partnership, the development of RailML is based on suggestions,

comments, and criticism of the partners. Individual application developers work

together in a coordinated fashion to complete the actual work of developing

elements of RailML. These developers form groups (open to all interested

partners) based on individual interests and then communicate through moderated

on-line user forums, newsgroups, and at regular meetings. As groups finish work

on RailML elements, consortium members serving as technical coordinators

finalize them and publish the standards (similar to the RFC for the Internet).

In summary, RailML standards are developed in the context of technical

discussions that are open to everyone interested in developing applications for

the railroad industry.

2 RailML Schemas

RailML is a generic language that can be used to describe railway-related data.

The language has been divided into sub-formats (or schemas) for particular types

of railway data. RailML consortium partners are currently developing data

structures for the three main types of data files used in railroad simulation:

timetable (schedule), infrastructure (with subsets for lines and stations), and

rolling stock. Figure 1 illustrates the RailML schemas.

Figure 1. Existing RailML schemas

At present the RailML timetable structure is most developed and has already

been incorporated into several applications (e.g. OpenTrack, FBS, Viriato and

OpenTimeTable [1]). A significant amount of work has been completed on both

the infrastructure and rolling stock schemas, but these have not yet been

finalized. Several additional schema have been suggested.

As a web-based development partnership, each schema has its own newsgroup

open for discussion. The newsgroups' purpose is two-fold: first, newsgroup

partners exchange information; second, knowledge and processing of definitions

is discussed and archived. RailML.org also supports a newsgroup for general

exchange and discussions that are not schema-related.

3 Data Transfer with RailML

RailML is a simple and efficient way to transfer data between computer

programs used to model different aspects of railroad operations. Programs using

the RailML language produce export files with the RailML structure; these files

can then be used directly by other programs. The receiving program parses the

incoming file to obtain only the data it needs, which allows many different

programs to use the same data file.

RailML provides two ways for data exchange. The first consists of running
applications separately and having them produce output files that are then used
as inputs for other applications. The second approach, currently under
development, consists of transferring data between two applications directly by
means of interprocess communication (e.g. Web services via TCP/IP) to
expenditure-exchange, i.e. without the detour of a file. Figure 2 illustrates the
two forms of data transfer process.

Figure 2. Examples of RailML Data Transfer

4 RailML Structure

This chapter describes the general structure of a RailML file using the timetable
schema as an example.

RailML is an XML-based language, this means that data files include both
data and descriptions of the data that they contain. All XML derived languages
use a very simple and flexible ASCII title format for their documents. In all
cases the documents are hierarchical, they form of a tree layout, i.e. each
document has a clear root element, from which navigation can start using the
general document structure (common to all RailML documents) as a guide.

The RailML document’s root element is called <railml>. The sub-schemas
(infrastructure, rolling stock, and timetable), which contain the railway-relevant
data, are then derived from this root structure. Using this flexible approach, each
individual RailML compatible application determines which particular types of
data should be used.

The data in XML documents are organized and administered by means of
elements and attributes. A RailML element begins with a start tag “< railml >”,
and ends with an ending tag “</railml>”. An element can have attributes for
more detailed description and may also contain additional elements.

Figure 4 illustrates an example RailML document, which contains timetable
data. Under the element “< timetable >” are listed the individual courses in the

element “< train >”. The most important attribute of a course, the course number
(trainID), is required; other attributes are optional.

Every train running (course) contains as many timetable entries as desired
“< entry >”, which are arranged listed under the element of “< timetableentries
>”. The individual timetable entries contain attributes such as station
abbreviation (pos ID), arrival time (arrival), departure time (departure), or
minimum station stopping time (min stop time).

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with OpenTrack (http://www.opentrack.ch) -->

<railml xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="timetable.xsd">

 <timetable version="0.95" scheduleformat="hh:mm:ss"

 periodformat="s">

 <train trainID="RX 100.2" type="planned"

 source="opentrack">

 <timetableentries>

 <entry posID="ZU" departure="06:08:00" type="begin">

 </entry>

 <entry posID="ZWI" departure="06:10:30" type="pass">

 </entry>

 <entry posID="ZOER" arrival="06:16:00"

 departure="06:17:00" minStopTime="9" type="stop">

 </entry>

 <entry posID="WS" departure="06:21:00" type="pass">

 </entry>

 <entry posID="DUE" d eparture="06:23:00" type="pass">

 </entry>

 <entry posID="SCW" departure="06:27:00" type="pass">

 </entry>

 <entry posID="NAE" departure="06:29:00" type="pass">

 </entry>

 <entry posID="UST" arrival="06:34:30" type="stop">

 </entry>

 </timetableentries>

 </train>

 </timetable>

</railml>

Figure 3. Example RailML Document

As Figure 3 illustrates, the RailML language is very similar to other XML-based
languages and therefore relatively easy to understand and use.

5 RailML Consortium

As outlined above, RailML is being developed as open source data format by a

group of railroad application developers who have joined together to form the

RailML Consortium. Program development is being led by the Fraunhofer

Institute and now includes many partners from academia and industry. As a

partnership all development is based on suggestions, comments, and criticism of

the partners.

Partners have two main responsibilities; first, to help develop RailML; and,

second to encourage the wide dissemination and application of RailML. New

partners are welcome to join the consortium at any time. [2]

There are two types of partners: Supportive Partners and Development

Partners. Supportive Partners receive the copyright for XML schemas (according

to the licensing terms and conditions) and are listed on the RailML web site with

a link to their respective homepage. Development Partners take an active part in

developing schemas by providing suggestions, comments, and recommendations.

Each schema has its own set of development partners.

Today the use of the RailML-schemes by all partners is free, as long the

formats and the copyright of railML.org are respected. Since autumn 2003,

RailML is a registered trademark.

Every application, which is be able to read or write RailML-data by a

railML-scheme can bemay use allowed to use the following RailML-Logo:

Figure 4. RailML-logo

6 Conclusions – Benefits for Simulation and Timetabling

The RailML project’s objective is to simplify data transfer between the growing

number of computerized rail simulation programs through the use of a common

data structure. This is extremely beneficial in that it allows railroad planners and

operators to easily use several different types of computer applications, using

each to do what it does best. In the past, specialized interface programs were

developed to transfer data between applications, but this is an inefficient and

time-consuming process. Furthermore, as the number of applications increases,

developing and maintaining these individual interfaces is becoming impractical.

Already several different railroad applications include interfaces that use the

RailML format to import and export timetable data between applications. These

programs include: FBS, Viriato, OpenTrack, and OpenTimeTable.

References

[1] For more information on these programmes please see: www.opentrack.ch,
www.irfp.de/fbs, www.viriato.ch, www.opentimetable.ch.

[2] All information about RailML can be found at www.railml.org.
[3] Fries, N., 2003, Modellierung und Abbildung einer Eisenbahn-Infrastruktur

auf ein Schema der XML-basierten Schnittstelle RailML (Diplomarbeit, TU
Dresden, Professur für Verkehrssicherungstechnik, Dresden).

[4] Hengartner, M., 2003, Grafikeditor für RailML-basierte Infrastrukturdaten
(Diplomarbeit, ETH Zürich, Institut für Verkehrsplanung und
Transportsysteme, Zürich).

[5] Hürlimann, D., 2002, Objektorientierte Modellierung von
Infrastrukturelementen und Betriebsvorgängen im Eisenbahnwesen, 2002,
Institut für Verkehrsplanung und Transportsysteme, ETH Zürich,
Schriftenreihe des IVT, Nr. 125.

[6] Montigel, M., 2002, Time-triggered exchange of train route data between
train control systems, in Computers in Railways, edited by J. Allan, R. J.
Hill, C. A. Brebbia, G. Sciutto & S. Sone (WIT Press, Southampton), pp.
33–41.

[7] Hoffmann, R., Krauss, V.P., 2001, RailML als Datenaustauschformat für
Eisenbahnsoftware (Projektbeschreibungen und -berichte sowie Konzepte,
Fraunhofer Gesellschaft e.V., Institut für Verkehrs- und Infrastruktur-
systeme, Dresden)

